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ARTICLE INFO ABSTRACT

Keywords: Freshwater lake sediments integrate physicochemical conditions and provide sensitive indicators of spatial
Microbiome variation in microbial community structure. This study investigated sediment bacterial communities from four
Microbiota sites in Singanallur Lake, Coimbatore, using 16S rRNA V3-V4 amplicon sequencing to characterize spatial
Sﬁ;ﬁggfjﬁm heterogeneity in sediment microbial communities under uniform seasonal conditions. Across all samples, a total
Abundance of 44 phyla, 114 classes, 257 orders, 466 families, and 1107 genera were detected, reflecting high taxonomic

richness and spatial variability within the lake sediments. The community was dominated by Pseudomonadota,
which ranged from 80.9 % in S1-51.8 % in S4, followed by Bacillota, Bacteroidota, and Cyanobacteriota. At the
genus level, Caulobacter decreased from 30.6 % in S1-12.5 % in S4, along with notable genera such as Bosea and
Phreatobacter. Alpha diversity increased steadily from S1 to S4, with observed OTUs ranging from 1722 to 13,796
and Shannon index values increasing from 5.14 to 8.44. Sequencing coverage ranged from 0.34 to 0.74, indi-
cating incomplete sampling depth and representing a methodological limitation, while Gini coefficients
(0.64-0.83) reflected uneven community structures, particularly in S1. Several low-abundance and site-enriched
genera, including Akkermansia, Helicobacter, and Candidatus Saccharimonas, showed localized enrichment, indi-
cating site-specific environmental conditions within the lake. Venn diagram analysis showed a core of five shared
genera representing 31.3 % of total abundance, while rare and unique taxa exhibited minimal overlap (4.0 % and
3.8 %), highlighting strong spatial differentiation among sampling sites. Heatmap-based multivariate analysis
integrating microbial OTU abundance with measured physicochemical water quality parameters and sediment
heavy metal concentrations revealed clear associations between microbial assemblages and localized environ-
mental gradients. These patterns indicate that sediment microbial communities respond sensitively to present-
day physicochemical heterogeneity within the lake. This study provides a baseline spatial ecogenomic frame-
work for Singanallur Lake and highlights the value of integrating microbial community profiling with water
quality and metal measurements for future monitoring and comparative assessments.

Gini coefficient

1. Introduction

Rapid expansion of urban landscapes has increased pressure on
freshwater ecosystems, leading to spatial heterogeneity in physico-
chemical conditions and biological organization within lakes and res-
ervoirs.Freshwater lakes integrate physicochemical inputs from their
surrounding catchments and therefore exhibit measurable variation in
water quality and sediment characteristics (Wang et al., 2023).
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Variations in physicochemical parameters, nutrient availability, and
sediment composition can influence microbial community structure and
ecosystem functioning (D. Zhang et al., 2019). Microorganisms play a
central function in freshwater ecosystems, contributing to nutrient
cycling, organic matter breakdown, and water purification. The di-
versity and functioning of these systems are sensitive to changes in
environmental conditions (Niu et al., 2024). Environmental gradients
involving nutrients, organic matter, and heavy metals can influence
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microbial community composition, potentially favoring taxa adapted to
specific physicochemical conditions (Li et al., 2022). Changes in nutrient
availability and chemical composition of aquatic environments have
been shown to affect microbial diversity and relative abundance (Liu
et al., 2021). A high dominance of a few microbial groups is a sign of
ecological stress and structural imbalance of ecosystem, whereas higher
species richness and uniform distribution indicate a stable and func-
tioning ecosystem (Huang et al., 2023). Conventional ecological
assessment techniques are useful but limited, because they often fail to
capture the total microbial diversity since many microorganisms remain
uncultured or unknown (Rodriguez-Gijon et al., 2023). Next-generation
sequencing (NGS) technologies, together with environmental DNA
(eDNA) sampling, offer efficient ways to directly analyze species di-
versity and community structure in environmental samples (Deiner
et al., 2017). Among these techniques, Illumina sequencing is most
prevalent because it provides large amounts of data accurately and
rapidly at a relatively low cost, enabling precise detection and profiling
of microbial communities within complex environments (Degnan,
Ochman, 2012). Incorporating metagenomic approaches into environ-
mental monitoring enables identification of microbial taxa and assess-
ment of community-level ecological patterns in relation to measured
environmental variables (Datta et al., 2020). Metagenomic studies
commonly use bioinformatics tools such as Mothur which are commonly
applied to calculate alpha diversity indices, such as Shannon, Chaol,
and Simpson, helping to evaluate dominance and diversity patterns of
microbial communities (Finn, 2024). These metrics facilitate compari-
son of microbial community structure across sites and allow evaluation
of spatial variation in relation to environmental gradients (H. Zhang
et al., 2018). Modern NGS methods such as 16S rRNA amplicon
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sequencing and shotgun metagenomics are widely used to study mi-
crobial communities. Shotgun metagenomics provides detailed taxo-
nomic and functional information, whereas 16S rRNA sequencing offers
a less complex and cost-effective approach for characterizing commu-
nity composition, particularly in high-throughput studies (Tyagi and
Katara, 2024). For studies primarily aimed at describing community
structure, 16S rRNA sequencing represents an effective first-level
approach. This approach is particularly suitable for freshwater lake
systems where microbial communities vary spatially in response to
physicochemical conditions and sediment characteristics. Ecogenomic
patterns derived from such analyses provide insights into microbial
distribution and adaptation along environmental gradients, supporting
informed freshwater ecosystem management (N. Wang et al., 2024). In
this context, freshwater lakes act as sensitive systems in which sediment
microbial communities reflect spatial variation in present-day environ-
mental conditions. Analysis of microbial assemblages can reveal
site-specific enrichment of taxa adapted to local physicochemical con-
ditions and provide insight into spatial heterogeneity within lake eco-
systems. Such information contributes to microbial ecology research and
supports evidence-based approaches to freshwater ecosystem moni-
toring. In this study, we investigated sediment microbial communities of
Singanallur Lake, Coimbatore, using a spatially resolved, single-season
ecogenomic approach. By integrating 16S rRNA gene sequencing with
concurrent water quality and sediment heavy metal measurements, this
work provides a baseline assessment of spatial heterogeneity in micro-
bial community structure within the lake.
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Fig. 1. Sampling site of sediment from Singanallur lake, Coimbatore, Tamil Nadu, India. Fig. 1a. Heatmap construction based hierarchical clustering.
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2. Materials and methods
2.1. Study site and sample collection

The sediment samples were collected from Singanallur lake in
Coimbatore, Tamil Nadu, India. Sampling was conducted on 3 December
2023, during the post-monsoon winter season, to reduce the influence of
water disturbances. We used a sterilized grab sampler to collect the
sediment samples at four spatially distinct surface spots in the lake
(Fig. 1), and the sampling spots were labelled as S1, S2, S3, and S4 for
downstream molecular and statistical analyses.

At each site, surface sediment samples were collected from the upper
0-5 cm layer because this layer is widely recognized to contain the most
biologically active microbial communities and to be most responsive to
recent environmental conditions. A single sampling event was per-
formed at each site as part of a spatial baseline examination, designed to
detect site-specific variation in microbial community structure under
uniform seasonal conditions. The sediment samples were directly
transferred into sterile containers and transported to the laboratory
under cold conditions (on ice). All samples were processed within 24 h
of collection to avoid potential alterations in microbial community
composition. The subsamples were stored at —20 °C until further anal-
ysis. Water samples were collected in triplicates from the surface water
layer (<1 m depth) and further used for water quality analysis.

2.2. Physicochemical characterization of water quality

Water quality parameters were measured to describe the physico-
chemical environment associated with the sediment microbial commu-
nities. In situ measurements of pH, water temperature (°C), Alkalinity
(mg/L), Total Hardness (mg/L), Total dissolved solids (TDS), and Total
suspended solids (TSS) were recorded at each sampling site using a
portable multiparameter probe (Professional Plus, YSI, Yellow Springs,
OH, USA), following standard operational procedures to ensure consis-
tency across sites. Comparable physicochemical characterization ap-
proaches have been widely applied in freshwater sediment microbiome
studies to interpret microbial-environment interactions (Jia et al., 202.3;
L. Wang et al., 2018). For laboratory-based analyses, collected water
samples were processed as follows. The collected samples were filtered
through 0.45 pm pore-size membrane filters (Advantec MFS membrane
filter, Irvine, CA, USA) to remove suspended particulate matter prior to
nutrient estimation. Standard analytical methods were used to deter-
mine the concentrations of biochemical oxygen demand (BOD) and
chemical oxygen demand (COD). An automated water quality analyzer
(AutoAnalyzer 3 HR, Seal Analytical Inc., Mequon, WI, USA) quantified
nutrient parameters, including nitrate and phosphate. Absorbance
measurements were recorded using a UV-visible spectrophotometer
(GENESYS™, Thermo Fisher Scientific, Waltham, MA, USA), providing
an integrated assessment of organic load and nutrient status within the
aquatic system.

2.3. Heavy metal analysis

Heavy metal concentrations in sediment samples were measured to
estimate potential metal-associated ecological stress. Sediment samples
were air-dried, homogenized, and subjected to acid digestion with a
mixture of concentrated nitric acid and perchloric acid using standard
environmental protocols. The digested samples were filtered and diluted
with ultrapure water before analysis.

Concentrations of selected heavy metals, including lead (Pb), copper
(Cu), nickel (Ni), and zinc (Zn), were measured . Metal concentrations
were quantified using atomic absorption spectrophotometry (AAnalyst
400, PerkinElmer, Waltham, MA, USA). Calibration curves were pre-
pared using certified standard solutions, and analytical accuracy was
ensured through reagent blanks and quality control samples. Metal
concentrations were expressed as mg kg™ dry weight of sediment (W.
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2.4. DNA extraction from sediment samples

DNA extraction was performed following the protocol outlined by
(Rangaswamy et al., 2022), with slight alterations in incubation time
and reagent volumes. One gram of sediment was put into a 50 mL tube,
and 10 mL of CTAB buffer was added. The sample was thoroughly mixed
using a vortex mixer and then agitated at 60 °C for 10 min. Later, 15 mL
of Sevag solution was added, and the mixture was vortexed at low speed
for 5 min. The sample was then centrifuged at 3220 x g for 15 min to
separate the layers. The clear liquid on top was carefully moved to a new
50 mL tube without disturbing the middle layer. The same amount of
cold isopropanol and half the amount of 5 M NaCl were added. The
mixture was shaken and then kept at —20 °C for at least 1 h and up to
12 h.

After incubation, the sample was centrifuged at 3220 x g for 15 min.
The supernatant was removed, and the resulting pellet was retained for
further analysis. Two milliliters of 70 % ethanol were added to the
pellet, and the sample was centrifuged at 4000 rpm (3220 xg) for 2 min.
The ethanol was discarded, and the pellet was air-dried for 1 h. Finally,
20 pL of 10 mM Tris-HCl was added to the dried pellet. The extracted
DNA samples were stored at —20 °C.

2.5. 16S rRNA gene amplification and quality assessment

DNA samples were initially evaluated for quality as outlined by
(Sharma et al., 2024) using NanoDrop spectrophotometry and agarose
gel electrophoresis. DNA purity was assessed from using the 260/280
absorbance ratio, which was found to be between 1.8 and 2.0. For
metagenomic analysis, the 16S rRNA gene was amplified with the
primers 16S F: 5-AGAGTTTGATGMTGGCTCAG-3' and 16S R:
5-TTACCGCGGCMGCSGGCAC-3, targeting a broad region of the 16S
rRNA gene encompassing the V3-V4 hypervariable region. PCR mix-
tures were prepared by combining Taq Master Mix, 2 uL of each primer,
and 20 pL of DNA template at a concentration of 40 ng.

Amplification was carried out under standardized PCR conditions: an
initial denaturation at 95 °C for 7 min, 35 cycles of denaturation at 95 °C
for 30 s, annealing at 46 °C for 30 s, and extension at 72 °C for 1 min,
and concluded with a final extension at 72 °C for 5 min. Aliquots of 2 pL
of the PCR products were assessed on agarose gel electrophoresis con-
taining 0.5 ug/mL of ethidium bromide. The amplified 16S products
were purified and again examined using agarose gel electrophoresis and
NanoDrop spectrophotometry. DNA purity was reconfirmed from the
260/280 absorbance ratio, which remained within the range of 1.8-2.0.
Following PCR amplification and purification, sequencing libraries were
prepared using Illumina barcoded adapters. Libraries were purified
using magnetic bead-based cleanup and quantified prior to sequencing.

2.6. Illumina MiSeq sequencing and data quality control

Sequencing was performed on an Illumina MiSeq platform using
paired-end 2 x 300 bp chemistry, which enables high-quality
sequencing of the 16S rRNA V3-V4 region with sufficient read length
and overlap for accurate assembly (Illumina, n.d.). Raw sequence data
were demultiplexed and subjected to quality assessment using FastQC
and MultiQC. Low-quality reads, ambiguous bases, and sequencing ar-
tefacts were removed prior to downstream analysis. Chimera detection
was performed, and only high-quality reads were retained for OTU
clustering and taxonomic assignment.

2.7. Sequence processing and taxonomic classification
Contiguous sequences were created from raw sequence reads using

Mothur's "make.contigs" function (v.1.47.0; accessed on 7% August,
2025), following the MiSeq Standard Operating Procedure (http
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s://mothur.org/wiki) as described by (Kozich et al., 2013). Low-quality
sequences were taken out employing the screen.seqs command. This
included sequences containing ambiguous bases, homopolymer runs of
> 8 bp, and sequences outside the expected length range (450-500 bp)
for the 16S V3-V4 rRNA region. A reference database specific to the
targeted hypervariable region was constructed from the SILVA reference
database (v.138.1) using the ‘pcr.seqs’ command, as described by (Quast
et al., 2012). Sequences were aligned using the ‘align.seqs’ routine, and
pre-clustered sequences were checked for chimeric regions with
VSEARCH as described by (Rognes et al., 2016) and identified chimeras
were excluded from further analysis. Taxonomic assignment was carried
out using the custom reference database and the command ‘classify.
seqs’. Sequences that could not be properly aligned were removed
during quality control. Pairwise distances between sequences were
calculated using the ‘dist.seqs’ command, and operational taxonomic
units (OTUs) were grouped using a 0.03 distance threshold with the
‘cluster’ command. Alpha diversity analyses were performed based on
the OTU classifications.

2.8. Statistical analysis of OTUs

Microbial community diversity was assessed using alpha diversity
indices derived from OTU abundance profiles generated through the
Mothur pipeline (Kozich et al., 2013). All sequence data were processed
using Mothur v1.47.0, following the MiSeq Standard Operating Pro-
cedure (SOP). OTUs were clustered at 97 % sequence similarity using
the opti_mcc algorithm. Sample-specific.shared files were generated for
downstream analysis.

Alpha diversity metrics were calculated in R v4.3.1 using the tidy-
verse and packages. The following indices were computed for each
sample: Simpson index, Shannon diversity index, Chaol richness esti-
mator, observed OTUs (Sobs), and Good’s coverage. Good’s coverage
was measured as the proportion of total sequences that are not single-
tons, using the formula:

P
C=1- N
where F1 is the number of singleton OTUs and N is the total number of
sequences. Coverage values are expressed as proportions (0-1), repre-
senting sampling completeness. These indices were used to evaluate
species richness, evenness, and sampling completeness.

In addition to standard alpha diversity measures, community even-
ness was quantified using the Gini coefficient. A Gini coefficient of
0 represents perfect evenness, where all taxa are present in equal pro-
portions. In contrast, values closer to 1 reflect strong inequality in the
community, meaning that one or a few taxa dominate while the rest
occur at much lower abundances. This index was calculated using the
non-parametric formula described by (Feranchuk et al., 2018):

n
Z i'Xi
G— it

- n
2- in
i=1

where x; represents the abundance of the i® OTU, sorted in ascending
order, and n is the number of OTUs with non-zero abundance.

2.9. Genus-level community profiling and visualization

Genus-level microbial community analysis was performed using R
(v4.3.1). Abundance data from sediment surface samples (S1-S4) were
imported and merged into a single dataset. Records lacking genus
annotation or containing zero read counts were excluded. Phyla were
classified into three abundance-based categories: Dominant (>1000
reads), Rare (101-999 reads), and Unique (<100 reads). Relative
abundances were calculated for each genus within these categories
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across all samples.

The ten most abundant genera in each sample were identified based
on relative abundance. Genus-level distributions were shown using bar
plots organized by abundance category and sample. These plots helped
to evaluate how each genus contributed to the overall community
structure within each phylum.

2.10. Comparative genus-level overlap analysis

Venn diagrams were created using Venny v2.1.0 to assess the shared
microbial genera across samples within each abundance category;
accessed on 271 August, 2025 (Oliveros, 2024). The top ten genera
known from each of the four sediment surface samples (S1 to S4) were
grouped separately for the Dominant, Unique, and Rare phylum-level
categories. Four-set Venn diagrams were creaed for each category to
visualize shared and unique genera among the samples.

2.11. Multivariate analysis of water quality and OTUs

To investigate the relationships between the water quality parame-
ters, heavy metal concentrations, and the microbial OTU abundance,
multivariate statistical analyses and heatmap visualizations were per-
formed using RStudio (R statistical software, version 4.3.1). Prior to
visualization, the datasets were screened for missing values and outliers.
To account for differences in measurement scales among the variables,
data were log-transformed where appropriate and standardized using Z-
score normalization. The Z-score normalization is an common approach
in environmental microbiome studies to emphasize the relative varia-
tion across the samples (Jia et al., 2023).

Heatmaps were created via the pheatmap package in R, and hierar-
chical clustering was applied to both rows (environmental parameters
and microbial OTUs) and columns (sampling sites) using Euclidean
distance and the complete linkage method. This analytical framework
has been widely used to identify co-variation patterns between physi-
cochemical gradients, heavy metals, and microbial community structure
in freshwater and sediment ecosystems (L. Wang et al., 2018; W. Wang
et al., 2019).

The resulting heatmaps enabled visualization of statistical associa-
tions and co-occurrence patterns between physicochemical variables,
heavy metals, and microbial taxa. Observed clustering patterns were
interpreted as ecological associations rather than direct causal re-
lationships, consistent with best practices in multivariate microbial
community analysis.

3. Results and discussion
3.1. Overview of microbial diversity in lake sediments

Sediment microbial communities provide insight into spatial het-
erogeneity within freshwater lake ecosystems, reflecting variation in
local environmental conditions. The analysis of sediment samples from
the lake showed a highly heterogeneous bacterial assemblage, reflecting
complex and spatially variable environmental conditions. By combining
DNA sequences from all samples and filtering out non-bacterial reads,
zero-abundance OTUs, and taxa that could not be assigned, we found 44
phyla, 114 classes, 257 orders, 466 families, and 1107 genera, indicating
the coexistence of both broadly distributed and site-restricted microbial
lineages. This broad taxonomic distribution highlights pronounced
spatial heterogeneity within the lake sediments, consistent with the
presence of multiple ecological niches maintained by localized envi-
ronmental gradients. Such high taxonomic resolution at multiple hier-
archical levels is characteristic of freshwater sediments exhibiting
heterogeneous physicochemical conditions, where dominant taxa
coexist with diverse rare and specialist groups. This taxonomic
complexity provides the ecological context for subsequent analyses of
richness, dominance, evenness, and site-specific ~community
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differentiation presented in the following sections.

3.2. Statistical analysis of microbial community and diversity patterns

The community diversity results in Table 1 revealed notable differ-
ences among the samples. Sequencing coverage values were generally
low, ranging from 0.34 in S3-0.74 in S1, indicating incomplete repre-
sentation of the total microbial community and representing a meth-
odological limitation. Species richness, measured by OTUs, increased
steadily from 1722 in S1-13,796 in S4 progressively. The Chaol esti-
mator further emphasized this trend, with values rising sharply from
8221.3 in S1-185,547.4 in S4, suggesting the presence of a large pool of
rare and unobserved taxa, particularly in the more diverse sites. Shan-
non diversity indices increased from 5.14 in S1-8.44 in S4. Although
these values appear high, similar Shannon index ranges have been re-
ported for sediment and soil microbiomes characterized by high taxo-
nomic richness and environmental heterogeneity. In such systems, the
Shannon index is strongly influenced by the presence of numerous low-
abundance taxa, and elevated values do not necessarily indicate uni-
formly even communities. In the present study, the relatively high
Shannon values are consistent with the combination of high OTU rich-
ness and moderate dominance, as further supported by high Simpson
index values (0.95-0.99) and lower Gini coefficients in S3 and S4. The
Shannon values, the Simpson index values and the Gini coefficients
together show that the later samples support more complex and taxo-
nomically rich communities than S1 and S2. Given the limited
sequencing coverage, Shannon diversity values are therefore interpreted
comparatively among sites rather than as absolute indicators of
ecosystem stability, which is appropriate for spatial baseline assess-
ments of sediments.

Chaol is known to be highly sensitive to the number of singleton and
low-abundance OTUs, and can substantially overestimate true richness,
when sequencing coverage is limited or when communities harbor an
extensive rare biosphere (Chao, 1984; Hughes et al., 2002; Schloss,
Handelsman, 2005). The combination of low Good’s coverage and a
large proportion of rare taxa in S3 and S4 likely contributed to inflation
of Chaol estimates.

Similar Chaol overestimations appear in sediment and soil micro-
biomes characterized by high heterogeneity, where thousands of rare
taxa coexist but are incompletely sampled (Fierer et al., 2012;
Delgado-Baquerizo et al., 2018). Therefore, in the present study, Chaol
values are interpreted as indicators of relative richness potential rather
than absolute species numbers. Significantly, despite possible over-
estimation of absolute richness, the consistent increase in observed
OTUs, Shannon, Simpson, and Gini indices collectively supports the
conclusion that S3 and S4 harbor substantially richer and more complex
microbial communities than S1 and S2.

The inequality in community composition was further assessed using
the Gini coefficient as shown in Table 2. The values were ranged be-
tween 0.64 and 0.83, highlighting the differences in the evenness of
taxon distributions across the samples. The highest Gini value was found
in S1 (0.83), which means that few taxa were very dominant and
reduced community balance. In contrast, S3 (0.64) and S4 (0.66)
exhibited lower values, which indicates generally more equitable dis-
tributions of taxa despite their higher richness. S2 showed an interme-
diate value (0.68), reflecting low dominance patterns. These results
complement the Shannon and Simpson indices, confirming that while
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Table 2

Gini coefficients representing community
evenness of microbial communities across
sediment samples from Singanallur Lake.

Sample Gini

S1 0.830627
S2 0.677767
S3 0.643755
S4 0.66543

richness increased with later samples, community evenness varied, with
S1 being the most uneven and S3 and S4 reflecting greater balance in
species distribution.

3.3. Phylum-level taxonomic composition of the microbial community

Across all four lake samples (S1-S4) as seen in Fig. 2, the community
was primarily shaped by a few dominant phyla, with Pseudomonadota
consistently showing the highest abundance, reaching 80.87 % in S1
and remaining dominant in S2 (59.84 %), S3 (52.26 %), and S4
(51.76 %). Bacillota was more prominent in S3 and S4 (25.39 % each),
while Bacteroidota (8.24-11.64 %) and Cyanobacteriota
(7.02-11.32 %) maintained moderate levels across samples. Rare phyla,
including Actinomycetota, Campylobacterota, Verrucomicrobiota,
Patescibacteria, and Myxococcota, appeared in low proportions but
were consistently represented across sites. Unique contributions varied
as S1 was enriched with Patescibacteria (17.1 %) and Chloroflexota
(12.2 %), S2 with Fusobacteriota (8.6 %) and Halobacteriota (9.5 %), S3
with Spirochaetota (3.1 %) and Gemmatimonadota (4.5 %), and S4 with
Acidobacteriota (5.7 %) and Armatimonadota (5.7 %). Overall, the re-
sults indicate that Pseudomonadota were the dominant group, while
rare and unique phyla contributed to site-specific differences in
diversity.

3.4. Genera within the dominant phyla: the case of pseudomonadota

Within dominant phyla as shown in Fig. 3a, Caulobacter was the most
abundant genus across all sites, accounting for 30.55 % in S1 and
decreasing to 12.53 % in S4. Other consistently present genera included
Bosea, Phreatobacter, and unclassified genera of Sphingomonadaceae
and Caulobacteraceae. S3 and S4 also contained smaller fractions of
Sinobaca, unclassified genera of Lactobacillales, and Veillonella. The high
abundance of Pseudomonadota reflects their ecological versatility in
freshwater sediments, while Caulobacter can thrive under changing
nutrient conditions and exhibits morphological adaptations under
certain limitations (Heinrich et al., 2019;Hentchel et al., 2019). Bosea
and related taxa have been reported in freshwater systems influenced by
variable nutrient availability (Khanal et al., 2025). The overall domi-
nance of Pseudomonadota is supported by their ability to use a wide
range of metabolic pathways (Qiu et al., 2025). Sphingomonadaceae and
Caulobacteraceae are frequently found in freshwater systems because of
their physiological flexibility, ability to form biofilms, and diverse
metabolic capabilities. Their adaptability allows them to colonize
different habitats, survive on surfaces, and help break down contami-
nants, emphasizing their important role in aquatic ecosystems (de Vries
et al., 2019; Nguyen et al., 2021). Their widespread presence suggests
effective resource utilization and physiological adaptability. Their

Table 1
Sequencing coverage, observed species (Sobs), and diversity indices (Chaol, Shannon, and Simpson) across samples S1-54.
Sample OTU count nseqs Good's coverage sobs simpson chao shannon
S1 1722 5359 0.74 1722 0.96 8221.34 5.14
S2 2368 3708 0.41 2368 0.99 32125.03 6.75
S3 3070 4339 0.34 3070 0.99 47555.44 7.32
S4 13796 20776 0.38 13796 0.99 185547.4 8.44
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Fig. 2. Distribution patterns of microbial communities at the phylum level, highlighting compositional differences among the sampled categories.

adaptable metabolism probably drives their ecological success and im-
pacts the microbial community structure across different sites.

3.5. Rare genera as indicators of site-specific environmental conditions

Among the rare phyla shown in Fig. 3b, Akkermansia and Helicobacter
were the most consistent genera appearing in almost all samples with
abundances reaching up to 0.36 %. These genera, commonly associated
with host-associated environments, may reflect localized environmental
inputs within the lake sediments (Aziz et al., 2015; T. Zhang et al.,
2019). Candidatus Saccharimonas was found in small amounts between
0.08 % and 0.19 % but plays an important ecological role through its
reduced genome and dependence on symbiosis showing that it interacts
with other microbes rather than being free-living (Lemos et al., 2019;
Penalver et al., 2024). Other sample-specific rare taxa, such as Collinsella
(S1), Desulfovibrio (S3), and Fusobacterium (S4), highlight localized
ecological signals. These rare taxa provide insight into site-specific
ecological conditions and microbial dependencies that shape fresh-
water rare biospheres.

3.6. Unique genera and site-specific dominance

Unique taxa as shown in Fig. 3¢, revealed strong sample-specific
patterns. In S1, Candidatus Saccharimonas dominated (14.45 %),
exceeding the relative abundance of top unique genera in other sites,
followed by unclassified Bacteroidia (5.63 %) and SM1A02 (4.65 %). In
contrast, S2-S4 were consistently shaped by unclassified Fim-
briimonadaceae (5.11-8.30 %), alongside contributions from unclassi-
fied Gemmatimonadaceae (2.46-3.70 %) and Treponema (2.28 % in S4).
The high dominance of Candidatus Saccharimonas in S1 reflects its
streamlined genome and symbiotic lifestyle (Lemos et al., 2019),
whereas Fimbriimonadaceae are known for their role in organic matter
degradation and persistence in aquatic systems (Quan, Im, 2020).
Gemmatimonadaceae likely contribute to nutrient cycling and phyto-
plankton interactions as described by (Mujaki¢ et al., 2021), while the
detection of Treponema may be linked to engineered systems and poor
sanitation signaling contamination risks and potentially indicating
animal-associated inputs (Mamuad et al., 2020). These findings indicate
that unique microbial groups serve as indicators of localized ecological
variation and site-specific environmental processes.

Together, these patterns indicate that S1 exhibits the highest degree

of community dominance and unevenness among sites, in the system. Its
strong dominance by Candidatus Saccharimonas at S1, combined with its
low alpha diversity and a high Gini coefficient, indicating a highly un-
even community structure. The marked enrichment of Pseudomonadota,
a phylum commonly associated with an increase in stress-tolerant and
opportunistic taxa in impacted environments. Overall, these indicators
show that S1 is likely experiencing greater environmental pressure than
the other sites.

3.7. Overlap analysis using venn diagram

Venn diagram analysis provided insights into the shared and distinct
genera across the lake samples (S1-S4). In the dominant phyla as shown
in Fig. 4a, five genera were common to all sites, forming a stable core
community which had a relative abundance of 31.3 %. Smaller overlaps
emphasized local differences, for example S3 and S4 shared three genera
(18.8 %), S1 and S2 shared two (12.5 %), while three-sample combi-
nations such as S1-S2-S4 and S2-S3-S4 revealed only a single shared
genus (6.3 % each). These patterns suggest that, alongside a strong lake-
wide core, localized environmental conditions influence site-specific
assemblages.

In the Venn diagram of rare phyla as presented in Fig. 4b, overlaps
were more limited. Only single genus (4 %) was found in all samples,
indicating a minimal rare core. Pairwise and group overlaps revealed
uneven patterns, with S3 and S4 having the highest number of shared
genera (16 %), followed by S2-S3-S4 with 3 genera (12 %). Other in-
tersections, including S1-S2 (4 %) and S1-S2-S4 (4 %), contributed
much less. This uneven distribution reflects the patchy and site-
dependent nature of rare taxa.

For the unique phyla as shown in Fig. 4¢, overlaps were even more
restricted. A single genus (3.8 %) was common across all sites, while S2-
S3-S4 shared three genera (11.5 %). S1-S2 had two shared genera
(7.7 %), and S3-S4 shared one genus (3.8 %), whereas no overlap was
detected among S1-S2-S4. These results highlight that unique phyla
were weakly represented, often restricted to only specific locations.

3.8. Influence of water quality and heavy metals on sediment microbial
communities

The observed correlations suggest that environmental filtering con-
tributes to the structuring sediment microbial communities in
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Fig. 3. a. Dominant bacterial genera across sites (§1-S4), highlighting the decline of Caulobacter and consistent presence of Bosea, Phreatobacter, and related taxa.
Fig. 3b. Rare bacterial genera (<0.5 %) showing signatures of fecal inputs (Akkermansia, Helicobacter) and site-specific taxa such as Collinsella, Desulfovibrio, and
Fusobacterium. Fig. 3c. Unique genera differentiating sites, with S1 dominated by Candidatus Saccharimonas and S2-S4 shaped by Fimbriimonadaceae, Gemmati-

monadaceae, and Treponema.
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Fig. 4. a. Venn diagram showing shared dominant genera across S1-S4, revealing a stable five-genus core and smaller overlaps driven by localized conditions.

Fig. 4b. Venn diagram of rare genera with only one genus shared across all sites, reflecting a minimal rare-core community. Fig. 4c. Venn diagram of unique genera
showing very limited overlap, with most taxa restricted to individual sites.
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Singanallur Lake. Heatmap-based clustering showed that sites with
elevated organic load, nutrients, and metal concentrations supported
distinct microbial assemblages, highlighting the sensitivity of sediment
microbiomes to combined physicochemical stressors.

Strong associations between BOD, COD, nutrient concentrations, and
specific OTU clusters are consistent with previous studies demonstrating
that organic enrichment and eutrophication selectively favor copio-
trophic and metabolically versatile microbial taxa in freshwater sedi-
ments. Similar enrichment of bacterial groups under high organic and
nutrient conditions has been reported in urban lakes and rivers, where
microbial communities shift toward taxa involved in organic matter
degradation and nutrient cycling (Jia et al., 2023; L. Wang et al., 2018).
These studies highlight that increased nutrient availability enhances
microbial richness but often alters community structure through selec-
tive pressures.

The co-occurrence of specific OTUs with elevated concentrations of
heavy metals such as Pb, Cu, Ni, and Zn further suggests that metal
contamination acts as an additional ecological filter. Numerous in-
vestigations have shown that heavy metals can suppress metal-sensitive
taxa while promoting metal-resistant or metal-tolerant microbial pop-
ulations, resulting in distinct community assemblages in contaminated
sediments (Giller et al., 2009; Gillan et al., 2015). Similar
metal-associated microbial clustering patterns have been documented in
lake and river sediments subjected to long-term anthropogenic inputs,
where microbial communities adapt through resistance mechanisms
such as efflux systems, sequestration, and enzymatic detoxification (W.
Wang et al., 2019).

Importantly, the observed heatmap correlations reflect consistent
ecological associations rather than direct causality, as multiple envi-
ronmental variables often co-vary in urban aquatic systems. Neverthe-
less, the congruence between heatmap clustering patterns and alpha
diversity metrics (Shannon, Simpson, and Gini indices) strengthens the
interpretation that sites experiencing higher environmental stress
exhibit altered community composition, increased dominance, and
reduced evenness, whereas less impacted sites support more diverse and
complex microbial assemblages. Comparable patterns linking physico-
chemical stress gradients with microbial diversity shifts have been re-
ported in sediment microbiomes across diverse freshwater ecosystems
(L. Wang et al., 2018: Delgado-Baquerizo et al., 2018).

Collectively, these findings indicate that sediment microbial com-
munities respond sensitively to spatial variation in water quality and
metal concentrations and heavy metal contamination. Integrating
multivariate heatmap analyses with diversity indices and environmental
measurements provides a robust framework for assessing ecological
condition and identifying zones of anthropogenic impact in urban
freshwater lakes.

Variations in water quality and heavy metal concentrations across
sampling sites were reflected in corresponding shifts in sediment mi-
crobial community structure. Differences in metals such as Pb, Cu, Ni,
and Zn were associated with changes in OTU abundance and clustering
patterns, indicating sensitivity of microbial communities to spatial metal
gradients. Although metal concentrations at sites S1-S4 did not consis-
tently exceed sediment quality guideline values, previous studies have
shown that prolonged exposure to low or moderate metal levels can
influence microbial community composition by favoring stress-tolerant
taxa.

In this study, sites with relatively higher metal enrichment and
organic load supported distinct microbial assemblages compared to less
enriched sites, suggesting chronic environmental pressure rather than
acute contamination. Together, the observed associations highlight that
sediment microbial communities respond to combined effects of water
quality and metal enrichment and can serve as sensitive indicators of
subtle ecosystem disturbance.

Cleaner Water 5 (2026) 100214

3.9. Heatmap-based correlation analysis of environmental parameters
and microbial OTUs

Heatmap-driven hierarchical clustering showed clear associations
between water quality parameters, heavy metal contents, and microbial
OTU patterns in the sediment samples. The results revealed that the
environmental factors and microbial taxa clustered into distinct groups,
indicating non-random co-variation and strong site-specific structuring
of the sediment microbial communities.

Several physicochemical parameters such as pH, Alkalinity, corre-
lates with specific OTU clusters. These OTUs were predominantly
associated with alkalinity, TDS, TSS, BOD, COD, and nutrient concen-
trations, exhibited strong positive enriched in sites characterized by
elevated organic load and nutrient availability, suggesting that micro-
bial community composition is closely linked to eutrophic and organi-
cally enriched sediment conditions, as shown in Fig. 5. Average water
quality parameters of sampling sites indicated in Table 3.

Heavy metals like Pb, Cu, Ni, and Zn formed a distinct but partially
overlapping cluster with subsets of OTUs, indicating metal-associated
microbial assemblages. OTUs co-occurring with elevated metal con-
centrations were predominantly restricted to specific sampling sites,
suggesting localized metal stress or selection pressure within the sedi-
ments. The clustering profile suggests a major role of metal-tolerant or
metal-associated microbial taxa in site-specific community divergence.
Correlation coefficients derived from the standardized dataset demon-
strated that several OTUs showed moderate to strong correlations (|r| >
0.6) with individual water quality parameters and heavy metals, sup-
porting statistically meaningful associations rather than random co-
occurrence. Hierarchical clustering of samples showed that sites with
similar physicochemical and metal profiles also harbored similar mi-
crobial community structures, confirming that environmental filtering
shapes sediment microbiomes.

Overall, the heatmap analysis demonstrates that spatial variation in
water quality parameters and metal concentrations is closely associated
in microbial OTU distribution and abundance, and that microbial
communities respond in a structured manner to combined organic and
metal stressors in urban freshwater sediments.

Spatial variation in water quality parameters and sediment heavy
metal concentrations within Singanallur Lake corresponded with
distinct microbial community patterns across sampling sites. Differences
in nutrient-related parameters and metal enrichment across the spatially
distinct sampling sites (§1-S4) were associated with changes in OTU
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Cyanobacteriota
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Actinomycetota
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Fig. 5. Heatmap based correlation analysis of water quality parameters and
microbial OTUs.
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Table 3
Physicochemical parameters of water quality.

Parameters Sample sites (Avg)
COD (mg/L) 109.25
Alkalinity (mg/L) 355.5
Temperature (°C) 28.3
pH 6.35
BOD (mg/L) 124.25
TDS (mg/L) 966.25
TSS (mg/L) 46
Total Hardness (mg/L) 358
Total Nitrogen (mg/L) 5.725
Total Phosphorous (mg/L) 15.25
Copper (mg/L) 1.8825
Zinc (mg/L) 1.498
Lead (mg/L) 2.1775
Nickel (mg/L) 2.035

abundance and clustering, indicating sensitivity of sediment microbial
communities to localized physicochemical gradients within the lake.
Although the study does not capture temporal dynamics, the observed
associations suggest that microbial assemblages respond to environ-
mental conditions within the lake. These patterns highlight the value of
sediment microbiomes as indicators of spatial heterogeneity in water
quality under uniform seasonal conditions.

4. Conclusion

This study provides a spatial ecogenomic characterization of the
sediment bacterial community of Singanallur Lake, characterized by a
stable spatially structured core of dominant phyla Pseudomonadota,
Bacillota, Cyanobacteriota, Bacteroidota, and Actinomycetota, which
together constitute over 90 % of the relative abundance. Within these,
the genera Caulobacter, Bosea, and Phreatobacter were identified as
highly adaptable and ecologically relevant groups that are widely re-
ported in freshwater sediments and exhibit physiological flexibility
under varying environmental conditions. Meanwhile, the consistent
presence of rare genera such as Akkermansia, Helicobacter, and Candi-
datus Saccharimonas highlights localized ecological variability and po-
tential niche specialization within the sediment microbial community.
The occurrence of unique and unclassified taxa within Fim-
briimonadaceae and Gemmatimonadaceae highlighted environmental
heterogeneity and the impact of urban runoff.

Overall, spatial variation in microbial community composition, di-
versity indices, and OTU distribution patterns was closely associated
with measured water quality parameters and sediment heavy metal
concentrations. These associations indicate that sediment microbial
communities respond sensitively to present-day physicochemical gra-
dients within the lake rather than providing evidence of long-term or
causal environmental impacts.

From a management perspective, integrating microbial community
assessments with routine water quality and sediment monitoring can
strengthen understanding of spatial ecological variability within fresh-
water lakes. Regular monitoring of sediment microbial communities
using high-throughput sequencing approaches can provide a sensitive
framework for tracking changes in lake ecosystem condition over time.

Overall, the results demonstrate that sediment microbial commu-
nities function as sensitive indicators of spatial environmental hetero-
geneity within freshwater lake systems, and their ecogenomic patterns
provide a baseline reference for future temporal, functional, and
comparative studies aimed at freshwater ecosystem assessment and
management.
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