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c Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
d Aix Marseille Univ., CNRS, LCE, Aix-en-Provence, France

A R T I C L E  I N F O

Keywords:
Microbiome
Microbiota
Anthropogenic
Bioindicators
Abundance
Gini coefficient

A B S T R A C T

Freshwater lake sediments integrate physicochemical conditions and provide sensitive indicators of spatial 
variation in microbial community structure. This study investigated sediment bacterial communities from four 
sites in Singanallur Lake, Coimbatore, using 16S rRNA V3–V4 amplicon sequencing to characterize spatial 
heterogeneity in sediment microbial communities under uniform seasonal conditions. Across all samples, a total 
of 44 phyla, 114 classes, 257 orders, 466 families, and 1107 genera were detected, reflecting high taxonomic 
richness and spatial variability within the lake sediments. The community was dominated by Pseudomonadota, 
which ranged from 80.9 % in S1–51.8 % in S4, followed by Bacillota, Bacteroidota, and Cyanobacteriota. At the 
genus level, Caulobacter decreased from 30.6 % in S1–12.5 % in S4, along with notable genera such as Bosea and 
Phreatobacter. Alpha diversity increased steadily from S1 to S4, with observed OTUs ranging from 1722 to 13,796 
and Shannon index values increasing from 5.14 to 8.44. Sequencing coverage ranged from 0.34 to 0.74, indi
cating incomplete sampling depth and representing a methodological limitation, while Gini coefficients 
(0.64–0.83) reflected uneven community structures, particularly in S1. Several low-abundance and site-enriched 
genera, including Akkermansia, Helicobacter, and Candidatus Saccharimonas, showed localized enrichment, indi
cating site-specific environmental conditions within the lake. Venn diagram analysis showed a core of five shared 
genera representing 31.3 % of total abundance, while rare and unique taxa exhibited minimal overlap (4.0 % and 
3.8 %), highlighting strong spatial differentiation among sampling sites. Heatmap-based multivariate analysis 
integrating microbial OTU abundance with measured physicochemical water quality parameters and sediment 
heavy metal concentrations revealed clear associations between microbial assemblages and localized environ
mental gradients. These patterns indicate that sediment microbial communities respond sensitively to present- 
day physicochemical heterogeneity within the lake. This study provides a baseline spatial ecogenomic frame
work for Singanallur Lake and highlights the value of integrating microbial community profiling with water 
quality and metal measurements for future monitoring and comparative assessments.

1. Introduction

Rapid expansion of urban landscapes has increased pressure on 
freshwater ecosystems, leading to spatial heterogeneity in physico
chemical conditions and biological organization within lakes and res
ervoirs.Freshwater lakes integrate physicochemical inputs from their 
surrounding catchments and therefore exhibit measurable variation in 
water quality and sediment characteristics (Wang et al., 2023). 

Variations in physicochemical parameters, nutrient availability, and 
sediment composition can influence microbial community structure and 
ecosystem functioning (D. Zhang et al., 2019). Microorganisms play a 
central function in freshwater ecosystems, contributing to nutrient 
cycling, organic matter breakdown, and water purification. The di
versity and functioning of these systems are sensitive to changes in 
environmental conditions (Niu et al., 2024). Environmental gradients 
involving nutrients, organic matter, and heavy metals can influence 
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microbial community composition, potentially favoring taxa adapted to 
specific physicochemical conditions (Li et al., 2022). Changes in nutrient 
availability and chemical composition of aquatic environments have 
been shown to affect microbial diversity and relative abundance (Liu 
et al., 2021). A high dominance of a few microbial groups is a sign of 
ecological stress and structural imbalance of ecosystem, whereas higher 
species richness and uniform distribution indicate a stable and func
tioning ecosystem (Huang et al., 2023). Conventional ecological 
assessment techniques are useful but limited, because they often fail to 
capture the total microbial diversity since many microorganisms remain 
uncultured or unknown (Rodríguez-Gijón et al., 2023). Next-generation 
sequencing (NGS) technologies, together with environmental DNA 
(eDNA) sampling, offer efficient ways to directly analyze species di
versity and community structure in environmental samples (Deiner 
et al., 2017). Among these techniques, Illumina sequencing is most 
prevalent because it provides large amounts of data accurately and 
rapidly at a relatively low cost, enabling precise detection and profiling 
of microbial communities within complex environments (Degnan, 
Ochman, 2012). Incorporating metagenomic approaches into environ
mental monitoring enables identification of microbial taxa and assess
ment of community-level ecological patterns in relation to measured 
environmental variables (Datta et al., 2020). Metagenomic studies 
commonly use bioinformatics tools such as Mothur which are commonly 
applied to calculate alpha diversity indices, such as Shannon, Chao1, 
and Simpson, helping to evaluate dominance and diversity patterns of 
microbial communities (Finn, 2024). These metrics facilitate compari
son of microbial community structure across sites and allow evaluation 
of spatial variation in relation to environmental gradients (H. Zhang 
et al., 2018). Modern NGS methods such as 16S rRNA amplicon 

sequencing and shotgun metagenomics are widely used to study mi
crobial communities. Shotgun metagenomics provides detailed taxo
nomic and functional information, whereas 16S rRNA sequencing offers 
a less complex and cost-effective approach for characterizing commu
nity composition, particularly in high-throughput studies (Tyagi and 
Katara, 2024). For studies primarily aimed at describing community 
structure, 16S rRNA sequencing represents an effective first-level 
approach. This approach is particularly suitable for freshwater lake 
systems where microbial communities vary spatially in response to 
physicochemical conditions and sediment characteristics. Ecogenomic 
patterns derived from such analyses provide insights into microbial 
distribution and adaptation along environmental gradients, supporting 
informed freshwater ecosystem management (N. Wang et al., 2024). In 
this context, freshwater lakes act as sensitive systems in which sediment 
microbial communities reflect spatial variation in present-day environ
mental conditions. Analysis of microbial assemblages can reveal 
site-specific enrichment of taxa adapted to local physicochemical con
ditions and provide insight into spatial heterogeneity within lake eco
systems. Such information contributes to microbial ecology research and 
supports evidence-based approaches to freshwater ecosystem moni
toring. In this study, we investigated sediment microbial communities of 
Singanallur Lake, Coimbatore, using a spatially resolved, single-season 
ecogenomic approach. By integrating 16S rRNA gene sequencing with 
concurrent water quality and sediment heavy metal measurements, this 
work provides a baseline assessment of spatial heterogeneity in micro
bial community structure within the lake.

Fig. 1. Sampling site of sediment from Singanallur lake, Coimbatore, Tamil Nadu, India. Fig. 1a. Heatmap construction based hierarchical clustering.
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2. Materials and methods

2.1. Study site and sample collection

The sediment samples were collected from Singanallur lake in 
Coimbatore, Tamil Nadu, India. Sampling was conducted on 3 December 
2023, during the post-monsoon winter season, to reduce the influence of 
water disturbances. We used a sterilized grab sampler to collect the 
sediment samples at four spatially distinct surface spots in the lake 
(Fig. 1), and the sampling spots were labelled as S1, S2, S3, and S4 for 
downstream molecular and statistical analyses.

At each site, surface sediment samples were collected from the upper 
0–5 cm layer because this layer is widely recognized to contain the most 
biologically active microbial communities and to be most responsive to 
recent environmental conditions. A single sampling event was per
formed at each site as part of a spatial baseline examination, designed to 
detect site-specific variation in microbial community structure under 
uniform seasonal conditions. The sediment samples were directly 
transferred into sterile containers and transported to the laboratory 
under cold conditions (on ice). All samples were processed within 24 h 
of collection to avoid potential alterations in microbial community 
composition. The subsamples were stored at –20 ◦C until further anal
ysis. Water samples were collected in triplicates from the surface water 
layer (<1 m depth) and further used for water quality analysis.

2.2. Physicochemical characterization of water quality

Water quality parameters were measured to describe the physico
chemical environment associated with the sediment microbial commu
nities. In situ measurements of pH, water temperature (◦C), Alkalinity 
(mg/L), Total Hardness (mg/L), Total dissolved solids (TDS), and Total 
suspended solids (TSS) were recorded at each sampling site using a 
portable multiparameter probe (Professional Plus, YSI, Yellow Springs, 
OH, USA), following standard operational procedures to ensure consis
tency across sites. Comparable physicochemical characterization ap
proaches have been widely applied in freshwater sediment microbiome 
studies to interpret microbial–environment interactions (Jia et al., 2023; 
L. Wang et al., 2018). For laboratory-based analyses, collected water 
samples were processed as follows. The collected samples were filtered 
through 0.45 µm pore-size membrane filters (Advantec MFS membrane 
filter, Irvine, CA, USA) to remove suspended particulate matter prior to 
nutrient estimation. Standard analytical methods were used to deter
mine the concentrations of biochemical oxygen demand (BOD) and 
chemical oxygen demand (COD). An automated water quality analyzer 
(AutoAnalyzer 3 HR, Seal Analytical Inc., Mequon, WI, USA) quantified 
nutrient parameters, including nitrate and phosphate. Absorbance 
measurements were recorded using a UV–visible spectrophotometer 
(GENESYS™, Thermo Fisher Scientific, Waltham, MA, USA), providing 
an integrated assessment of organic load and nutrient status within the 
aquatic system.

2.3. Heavy metal analysis

Heavy metal concentrations in sediment samples were measured to 
estimate potential metal-associated ecological stress. Sediment samples 
were air-dried, homogenized, and subjected to acid digestion with a 
mixture of concentrated nitric acid and perchloric acid using standard 
environmental protocols. The digested samples were filtered and diluted 
with ultrapure water before analysis.

Concentrations of selected heavy metals, including lead (Pb), copper 
(Cu), nickel (Ni), and zinc (Zn), were measured . Metal concentrations 
were quantified using atomic absorption spectrophotometry (AAnalyst 
400, PerkinElmer, Waltham, MA, USA). Calibration curves were pre
pared using certified standard solutions, and analytical accuracy was 
ensured through reagent blanks and quality control samples. Metal 
concentrations were expressed as mg kg⁻¹ dry weight of sediment (W. 

Wang et al., 2019).

2.4. DNA extraction from sediment samples

DNA extraction was performed following the protocol outlined by 
(Rangaswamy et al., 2022), with slight alterations in incubation time 
and reagent volumes. One gram of sediment was put into a 50 mL tube, 
and 10 mL of CTAB buffer was added. The sample was thoroughly mixed 
using a vortex mixer and then agitated at 60 ◦C for 10 min. Later, 15 mL 
of Sevag solution was added, and the mixture was vortexed at low speed 
for 5 min. The sample was then centrifuged at 3220 × g for 15 min to 
separate the layers. The clear liquid on top was carefully moved to a new 
50 mL tube without disturbing the middle layer. The same amount of 
cold isopropanol and half the amount of 5 M NaCl were added. The 
mixture was shaken and then kept at − 20 ◦C for at least 1 h and up to 
12 h.

After incubation, the sample was centrifuged at 3220 ×g for 15 min. 
The supernatant was removed, and the resulting pellet was retained for 
further analysis. Two milliliters of 70 % ethanol were added to the 
pellet, and the sample was centrifuged at 4000 rpm (3220 ×g) for 2 min. 
The ethanol was discarded, and the pellet was air-dried for 1 h. Finally, 
20 µL of 10 mM Tris-HCl was added to the dried pellet. The extracted 
DNA samples were stored at − 20 ◦C.

2.5. 16S rRNA gene amplification and quality assessment

DNA samples were initially evaluated for quality as outlined by 
(Sharma et al., 2024) using NanoDrop spectrophotometry and agarose 
gel electrophoresis. DNA purity was assessed from using the 260/280 
absorbance ratio, which was found to be between 1.8 and 2.0. For 
metagenomic analysis, the 16S rRNA gene was amplified with the 
primers 16S F: 5′-AGAGTTTGATGMTGGCTCAG-3′ and 16S R: 
5′-TTACCGCGGCMGCSGGCAC-3′, targeting a broad region of the 16S 
rRNA gene encompassing the V3–V4 hypervariable region. PCR mix
tures were prepared by combining Taq Master Mix, 2 µL of each primer, 
and 20 µL of DNA template at a concentration of 40 ng.

Amplification was carried out under standardized PCR conditions: an 
initial denaturation at 95 ◦C for 7 min, 35 cycles of denaturation at 95 ◦C 
for 30 s, annealing at 46 ◦C for 30 s, and extension at 72 ◦C for 1 min, 
and concluded with a final extension at 72 ◦C for 5 min. Aliquots of 2 µL 
of the PCR products were assessed on agarose gel electrophoresis con
taining 0.5 µg/mL of ethidium bromide. The amplified 16S products 
were purified and again examined using agarose gel electrophoresis and 
NanoDrop spectrophotometry. DNA purity was reconfirmed from the 
260/280 absorbance ratio, which remained within the range of 1.8–2.0. 
Following PCR amplification and purification, sequencing libraries were 
prepared using Illumina barcoded adapters. Libraries were purified 
using magnetic bead-based cleanup and quantified prior to sequencing.

2.6. Illumina MiSeq sequencing and data quality control

Sequencing was performed on an Illumina MiSeq platform using 
paired-end 2 × 300 bp chemistry, which enables high-quality 
sequencing of the 16S rRNA V3–V4 region with sufficient read length 
and overlap for accurate assembly (Illumina, n.d.). Raw sequence data 
were demultiplexed and subjected to quality assessment using FastQC 
and MultiQC. Low-quality reads, ambiguous bases, and sequencing ar
tefacts were removed prior to downstream analysis. Chimera detection 
was performed, and only high-quality reads were retained for OTU 
clustering and taxonomic assignment.

2.7. Sequence processing and taxonomic classification

Contiguous sequences were created from raw sequence reads using 
Mothur's "make.contigs" function (v.1.47.0; accessed on 7th August, 
2025), following the MiSeq Standard Operating Procedure (http 
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s://mothur.org/wiki) as described by (Kozich et al., 2013). Low-quality 
sequences were taken out employing the screen.seqs command. This 
included sequences containing ambiguous bases, homopolymer runs of 
≥ 8 bp, and sequences outside the expected length range (450–500 bp) 
for the 16S V3–V4 rRNA region. A reference database specific to the 
targeted hypervariable region was constructed from the SILVA reference 
database (v.138.1) using the ‘pcr.seqs’ command, as described by (Quast 
et al., 2012). Sequences were aligned using the ‘align.seqs’ routine, and 
pre-clustered sequences were checked for chimeric regions with 
VSEARCH as described by (Rognes et al., 2016) and identified chimeras 
were excluded from further analysis. Taxonomic assignment was carried 
out using the custom reference database and the command ‘classify. 
seqs’. Sequences that could not be properly aligned were removed 
during quality control. Pairwise distances between sequences were 
calculated using the ‘dist.seqs’ command, and operational taxonomic 
units (OTUs) were grouped using a 0.03 distance threshold with the 
‘cluster’ command. Alpha diversity analyses were performed based on 
the OTU classifications.

2.8. Statistical analysis of OTUs

Microbial community diversity was assessed using alpha diversity 
indices derived from OTU abundance profiles generated through the 
Mothur pipeline (Kozich et al., 2013). All sequence data were processed 
using Mothur v1.47.0, following the MiSeq Standard Operating Pro
cedure (SOP). OTUs were clustered at 97 % sequence similarity using 
the opti_mcc algorithm. Sample-specific.shared files were generated for 
downstream analysis.

Alpha diversity metrics were calculated in R v4.3.1 using the tidy
verse and packages. The following indices were computed for each 
sample: Simpson index, Shannon diversity index, Chao1 richness esti
mator, observed OTUs (Sobs), and Good’s coverage. Good’s coverage 
was measured as the proportion of total sequences that are not single
tons, using the formula: 

C = 1 −
F1

N 

where F1 is the number of singleton OTUs and N is the total number of 
sequences. Coverage values are expressed as proportions (0–1), repre
senting sampling completeness. These indices were used to evaluate 
species richness, evenness, and sampling completeness.

In addition to standard alpha diversity measures, community even
ness was quantified using the Gini coefficient. A Gini coefficient of 
0 represents perfect evenness, where all taxa are present in equal pro
portions. In contrast, values closer to 1 reflect strong inequality in the 
community, meaning that one or a few taxa dominate while the rest 
occur at much lower abundances. This index was calculated using the 
non-parametric formula described by (Feranchuk et al., 2018): 

G =

∑n

i=1
i⋅xi

2⋅
∑n

i=1
xi 

where xi represents the abundance of the ith OTU, sorted in ascending 
order, and n is the number of OTUs with non-zero abundance.

2.9. Genus-level community profiling and visualization

Genus-level microbial community analysis was performed using R 
(v4.3.1). Abundance data from sediment surface samples (S1-S4) were 
imported and merged into a single dataset. Records lacking genus 
annotation or containing zero read counts were excluded. Phyla were 
classified into three abundance-based categories: Dominant (≥1000 
reads), Rare (101–999 reads), and Unique (≤100 reads). Relative 
abundances were calculated for each genus within these categories 

across all samples.
The ten most abundant genera in each sample were identified based 

on relative abundance. Genus-level distributions were shown using bar 
plots organized by abundance category and sample. These plots helped 
to evaluate how each genus contributed to the overall community 
structure within each phylum.

2.10. Comparative genus-level overlap analysis

Venn diagrams were created using Venny v2.1.0 to assess the shared 
microbial genera across samples within each abundance category; 
accessed on 27th August, 2025 (Oliveros, 2024). The top ten genera 
known from each of the four sediment surface samples (S1 to S4) were 
grouped separately for the Dominant, Unique, and Rare phylum-level 
categories. Four-set Venn diagrams were creaed for each category to 
visualize shared and unique genera among the samples.

2.11. Multivariate analysis of water quality and OTUs

To investigate the relationships between the water quality parame
ters, heavy metal concentrations, and the microbial OTU abundance, 
multivariate statistical analyses and heatmap visualizations were per
formed using RStudio (R statistical software, version 4.3.1). Prior to 
visualization, the datasets were screened for missing values and outliers. 
To account for differences in measurement scales among the variables, 
data were log-transformed where appropriate and standardized using Z- 
score normalization. The Z-score normalization is an common approach 
in environmental microbiome studies to emphasize the relative varia
tion across the samples (Jia et al., 2023).

Heatmaps were created via the pheatmap package in R, and hierar
chical clustering was applied to both rows (environmental parameters 
and microbial OTUs) and columns (sampling sites) using Euclidean 
distance and the complete linkage method. This analytical framework 
has been widely used to identify co-variation patterns between physi
cochemical gradients, heavy metals, and microbial community structure 
in freshwater and sediment ecosystems (L. Wang et al., 2018; W. Wang 
et al., 2019).

The resulting heatmaps enabled visualization of statistical associa
tions and co-occurrence patterns between physicochemical variables, 
heavy metals, and microbial taxa. Observed clustering patterns were 
interpreted as ecological associations rather than direct causal re
lationships, consistent with best practices in multivariate microbial 
community analysis.

3. Results and discussion

3.1. Overview of microbial diversity in lake sediments

Sediment microbial communities provide insight into spatial het
erogeneity within freshwater lake ecosystems, reflecting variation in 
local environmental conditions. The analysis of sediment samples from 
the lake showed a highly heterogeneous bacterial assemblage, reflecting 
complex and spatially variable environmental conditions. By combining 
DNA sequences from all samples and filtering out non-bacterial reads, 
zero-abundance OTUs, and taxa that could not be assigned, we found 44 
phyla, 114 classes, 257 orders, 466 families, and 1107 genera, indicating 
the coexistence of both broadly distributed and site-restricted microbial 
lineages. This broad taxonomic distribution highlights pronounced 
spatial heterogeneity within the lake sediments, consistent with the 
presence of multiple ecological niches maintained by localized envi
ronmental gradients. Such high taxonomic resolution at multiple hier
archical levels is characteristic of freshwater sediments exhibiting 
heterogeneous physicochemical conditions, where dominant taxa 
coexist with diverse rare and specialist groups. This taxonomic 
complexity provides the ecological context for subsequent analyses of 
richness, dominance, evenness, and site-specific community 
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differentiation presented in the following sections.

3.2. Statistical analysis of microbial community and diversity patterns

The community diversity results in Table 1 revealed notable differ
ences among the samples. Sequencing coverage values were generally 
low, ranging from 0.34 in S3–0.74 in S1, indicating incomplete repre
sentation of the total microbial community and representing a meth
odological limitation. Species richness, measured by OTUs, increased 
steadily from 1722 in S1–13,796 in S4 progressively. The Chao1 esti
mator further emphasized this trend, with values rising sharply from 
8221.3 in S1–185,547.4 in S4, suggesting the presence of a large pool of 
rare and unobserved taxa, particularly in the more diverse sites. Shan
non diversity indices increased from 5.14 in S1–8.44 in S4. Although 
these values appear high, similar Shannon index ranges have been re
ported for sediment and soil microbiomes characterized by high taxo
nomic richness and environmental heterogeneity. In such systems, the 
Shannon index is strongly influenced by the presence of numerous low- 
abundance taxa, and elevated values do not necessarily indicate uni
formly even communities. In the present study, the relatively high 
Shannon values are consistent with the combination of high OTU rich
ness and moderate dominance, as further supported by high Simpson 
index values (0.95–0.99) and lower Gini coefficients in S3 and S4. The 
Shannon values, the Simpson index values and the Gini coefficients 
together show that the later samples support more complex and taxo
nomically rich communities than S1 and S2. Given the limited 
sequencing coverage, Shannon diversity values are therefore interpreted 
comparatively among sites rather than as absolute indicators of 
ecosystem stability, which is appropriate for spatial baseline assess
ments of sediments.

Chao1 is known to be highly sensitive to the number of singleton and 
low-abundance OTUs, and can substantially overestimate true richness, 
when sequencing coverage is limited or when communities harbor an 
extensive rare biosphere (Chao, 1984; Hughes et al., 2002; Schloss, 
Handelsman, 2005). The combination of low Good’s coverage and a 
large proportion of rare taxa in S3 and S4 likely contributed to inflation 
of Chao1 estimates.

Similar Chao1 overestimations appear in sediment and soil micro
biomes characterized by high heterogeneity, where thousands of rare 
taxa coexist but are incompletely sampled (Fierer et al., 2012; 
Delgado-Baquerizo et al., 2018). Therefore, in the present study, Chao1 
values are interpreted as indicators of relative richness potential rather 
than absolute species numbers. Significantly, despite possible over
estimation of absolute richness, the consistent increase in observed 
OTUs, Shannon, Simpson, and Gini indices collectively supports the 
conclusion that S3 and S4 harbor substantially richer and more complex 
microbial communities than S1 and S2.

The inequality in community composition was further assessed using 
the Gini coefficient as shown in Table 2. The values were ranged be
tween 0.64 and 0.83, highlighting the differences in the evenness of 
taxon distributions across the samples. The highest Gini value was found 
in S1 (0.83), which means that few taxa were very dominant and 
reduced community balance. In contrast, S3 (0.64) and S4 (0.66) 
exhibited lower values, which indicates generally more equitable dis
tributions of taxa despite their higher richness. S2 showed an interme
diate value (0.68), reflecting low dominance patterns. These results 
complement the Shannon and Simpson indices, confirming that while 

richness increased with later samples, community evenness varied, with 
S1 being the most uneven and S3 and S4 reflecting greater balance in 
species distribution.

3.3. Phylum-level taxonomic composition of the microbial community

Across all four lake samples (S1-S4) as seen in Fig. 2, the community 
was primarily shaped by a few dominant phyla, with Pseudomonadota 
consistently showing the highest abundance, reaching 80.87 % in S1 
and remaining dominant in S2 (59.84 %), S3 (52.26 %), and S4 
(51.76 %). Bacillota was more prominent in S3 and S4 (25.39 % each), 
while Bacteroidota (8.24–11.64 %) and Cyanobacteriota 
(7.02–11.32 %) maintained moderate levels across samples. Rare phyla, 
including Actinomycetota, Campylobacterota, Verrucomicrobiota, 
Patescibacteria, and Myxococcota, appeared in low proportions but 
were consistently represented across sites. Unique contributions varied 
as S1 was enriched with Patescibacteria (17.1 %) and Chloroflexota 
(12.2 %), S2 with Fusobacteriota (8.6 %) and Halobacteriota (9.5 %), S3 
with Spirochaetota (3.1 %) and Gemmatimonadota (4.5 %), and S4 with 
Acidobacteriota (5.7 %) and Armatimonadota (5.7 %). Overall, the re
sults indicate that Pseudomonadota were the dominant group, while 
rare and unique phyla contributed to site-specific differences in 
diversity.

3.4. Genera within the dominant phyla: the case of pseudomonadota

Within dominant phyla as shown in Fig. 3a, Caulobacter was the most 
abundant genus across all sites, accounting for 30.55 % in S1 and 
decreasing to 12.53 % in S4. Other consistently present genera included 
Bosea, Phreatobacter, and unclassified genera of Sphingomonadaceae 
and Caulobacteraceae. S3 and S4 also contained smaller fractions of 
Sinobaca, unclassified genera of Lactobacillales, and Veillonella. The high 
abundance of Pseudomonadota reflects their ecological versatility in 
freshwater sediments, while Caulobacter can thrive under changing 
nutrient conditions and exhibits morphological adaptations under 
certain limitations (Heinrich et al., 2019;Hentchel et al., 2019). Bosea 
and related taxa have been reported in freshwater systems influenced by 
variable nutrient availability (Khanal et al., 2025). The overall domi
nance of Pseudomonadota is supported by their ability to use a wide 
range of metabolic pathways (Qiu et al., 2025). Sphingomonadaceae and 
Caulobacteraceae are frequently found in freshwater systems because of 
their physiological flexibility, ability to form biofilms, and diverse 
metabolic capabilities. Their adaptability allows them to colonize 
different habitats, survive on surfaces, and help break down contami
nants, emphasizing their important role in aquatic ecosystems (de Vries 
et al., 2019; Nguyen et al., 2021). Their widespread presence suggests 
effective resource utilization and physiological adaptability. Their 

Table 1 
Sequencing coverage, observed species (Sobs), and diversity indices (Chao1, Shannon, and Simpson) across samples S1-S4.

Sample OTU count nseqs Good's coverage sobs simpson chao shannon

S1 1722 5359 0.74 1722 0.96 8221.34 5.14
S2 2368 3708 0.41 2368 0.99 32125.03 6.75
S3 3070 4339 0.34 3070 0.99 47555.44 7.32
S4 13796 20776 0.38 13796 0.99 185547.4 8.44

Table 2 
Gini coefficients representing community 
evenness of microbial communities across 
sediment samples from Singanallur Lake.

Sample Gini

S1 0.830627
S2 0.677767
S3 0.643755
S4 0.66543
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adaptable metabolism probably drives their ecological success and im
pacts the microbial community structure across different sites.

3.5. Rare genera as indicators of site-specific environmental conditions

Among the rare phyla shown in Fig. 3b, Akkermansia and Helicobacter 
were the most consistent genera appearing in almost all samples with 
abundances reaching up to 0.36 %. These genera, commonly associated 
with host-associated environments, may reflect localized environmental 
inputs within the lake sediments (Aziz et al., 2015; T. Zhang et al., 
2019). Candidatus Saccharimonas was found in small amounts between 
0.08 % and 0.19 % but plays an important ecological role through its 
reduced genome and dependence on symbiosis showing that it interacts 
with other microbes rather than being free-living (Lemos et al., 2019; 
Peñalver et al., 2024). Other sample-specific rare taxa, such as Collinsella 
(S1), Desulfovibrio (S3), and Fusobacterium (S4), highlight localized 
ecological signals. These rare taxa provide insight into site-specific 
ecological conditions and microbial dependencies that shape fresh
water rare biospheres.

3.6. Unique genera and site-specific dominance

Unique taxa as shown in Fig. 3c, revealed strong sample-specific 
patterns. In S1, Candidatus Saccharimonas dominated (14.45 %), 
exceeding the relative abundance of top unique genera in other sites, 
followed by unclassified Bacteroidia (5.63 %) and SM1A02 (4.65 %). In 
contrast, S2-S4 were consistently shaped by unclassified Fim
briimonadaceae (5.11–8.30 %), alongside contributions from unclassi
fied Gemmatimonadaceae (2.46–3.70 %) and Treponema (2.28 % in S4). 
The high dominance of Candidatus Saccharimonas in S1 reflects its 
streamlined genome and symbiotic lifestyle (Lemos et al., 2019), 
whereas Fimbriimonadaceae are known for their role in organic matter 
degradation and persistence in aquatic systems (Quan, Im, 2020). 
Gemmatimonadaceae likely contribute to nutrient cycling and phyto
plankton interactions as described by (Mujakić et al., 2021), while the 
detection of Treponema may be linked to engineered systems and poor 
sanitation signaling contamination risks and potentially indicating 
animal-associated inputs (Mamuad et al., 2020). These findings indicate 
that unique microbial groups serve as indicators of localized ecological 
variation and site-specific environmental processes.

Together, these patterns indicate that S1 exhibits the highest degree 

of community dominance and unevenness among sites, in the system. Its 
strong dominance by Candidatus Saccharimonas at S1, combined with its 
low alpha diversity and a high Gini coefficient, indicating a highly un
even community structure. The marked enrichment of Pseudomonadota, 
a phylum commonly associated with an increase in stress-tolerant and 
opportunistic taxa in impacted environments. Overall, these indicators 
show that S1 is likely experiencing greater environmental pressure than 
the other sites.

3.7. Overlap analysis using venn diagram

Venn diagram analysis provided insights into the shared and distinct 
genera across the lake samples (S1-S4). In the dominant phyla as shown 
in Fig. 4a, five genera were common to all sites, forming a stable core 
community which had a relative abundance of 31.3 %. Smaller overlaps 
emphasized local differences, for example S3 and S4 shared three genera 
(18.8 %), S1 and S2 shared two (12.5 %), while three-sample combi
nations such as S1-S2-S4 and S2-S3-S4 revealed only a single shared 
genus (6.3 % each). These patterns suggest that, alongside a strong lake- 
wide core, localized environmental conditions influence site-specific 
assemblages.

In the Venn diagram of rare phyla as presented in Fig. 4b, overlaps 
were more limited. Only single genus (4 %) was found in all samples, 
indicating a minimal rare core. Pairwise and group overlaps revealed 
uneven patterns, with S3 and S4 having the highest number of shared 
genera (16 %), followed by S2-S3-S4 with 3 genera (12 %). Other in
tersections, including S1-S2 (4 %) and S1-S2-S4 (4 %), contributed 
much less. This uneven distribution reflects the patchy and site- 
dependent nature of rare taxa.

For the unique phyla as shown in Fig. 4c, overlaps were even more 
restricted. A single genus (3.8 %) was common across all sites, while S2- 
S3-S4 shared three genera (11.5 %). S1-S2 had two shared genera 
(7.7 %), and S3-S4 shared one genus (3.8 %), whereas no overlap was 
detected among S1-S2-S4. These results highlight that unique phyla 
were weakly represented, often restricted to only specific locations.

3.8. Influence of water quality and heavy metals on sediment microbial 
communities

The observed correlations suggest that environmental filtering con
tributes to the structuring sediment microbial communities in 

Fig. 2. Distribution patterns of microbial communities at the phylum level, highlighting compositional differences among the sampled categories.
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Fig. 3. a. Dominant bacterial genera across sites (S1-S4), highlighting the decline of Caulobacter and consistent presence of Bosea, Phreatobacter, and related taxa. 
Fig. 3b. Rare bacterial genera (≤0.5 %) showing signatures of fecal inputs (Akkermansia, Helicobacter) and site-specific taxa such as Collinsella, Desulfovibrio, and 
Fusobacterium. Fig. 3c. Unique genera differentiating sites, with S1 dominated by Candidatus Saccharimonas and S2–S4 shaped by Fimbriimonadaceae, Gemmati
monadaceae, and Treponema.
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Fig. 4. a. Venn diagram showing shared dominant genera across S1-S4, revealing a stable five-genus core and smaller overlaps driven by localized conditions. 
Fig. 4b. Venn diagram of rare genera with only one genus shared across all sites, reflecting a minimal rare-core community. Fig. 4c. Venn diagram of unique genera 
showing very limited overlap, with most taxa restricted to individual sites.
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Singanallur Lake. Heatmap-based clustering showed that sites with 
elevated organic load, nutrients, and metal concentrations supported 
distinct microbial assemblages, highlighting the sensitivity of sediment 
microbiomes to combined physicochemical stressors.

Strong associations between BOD, COD, nutrient concentrations, and 
specific OTU clusters are consistent with previous studies demonstrating 
that organic enrichment and eutrophication selectively favor copio
trophic and metabolically versatile microbial taxa in freshwater sedi
ments. Similar enrichment of bacterial groups under high organic and 
nutrient conditions has been reported in urban lakes and rivers, where 
microbial communities shift toward taxa involved in organic matter 
degradation and nutrient cycling (Jia et al., 2023; L. Wang et al., 2018). 
These studies highlight that increased nutrient availability enhances 
microbial richness but often alters community structure through selec
tive pressures.

The co-occurrence of specific OTUs with elevated concentrations of 
heavy metals such as Pb, Cu, Ni, and Zn further suggests that metal 
contamination acts as an additional ecological filter. Numerous in
vestigations have shown that heavy metals can suppress metal-sensitive 
taxa while promoting metal-resistant or metal-tolerant microbial pop
ulations, resulting in distinct community assemblages in contaminated 
sediments (Giller et al., 2009; Gillan et al., 2015). Similar 
metal-associated microbial clustering patterns have been documented in 
lake and river sediments subjected to long-term anthropogenic inputs, 
where microbial communities adapt through resistance mechanisms 
such as efflux systems, sequestration, and enzymatic detoxification (W. 
Wang et al., 2019).

Importantly, the observed heatmap correlations reflect consistent 
ecological associations rather than direct causality, as multiple envi
ronmental variables often co-vary in urban aquatic systems. Neverthe
less, the congruence between heatmap clustering patterns and alpha 
diversity metrics (Shannon, Simpson, and Gini indices) strengthens the 
interpretation that sites experiencing higher environmental stress 
exhibit altered community composition, increased dominance, and 
reduced evenness, whereas less impacted sites support more diverse and 
complex microbial assemblages. Comparable patterns linking physico
chemical stress gradients with microbial diversity shifts have been re
ported in sediment microbiomes across diverse freshwater ecosystems 
(L. Wang et al., 2018: Delgado-Baquerizo et al., 2018).

Collectively, these findings indicate that sediment microbial com
munities respond sensitively to spatial variation in water quality and 
metal concentrations and heavy metal contamination. Integrating 
multivariate heatmap analyses with diversity indices and environmental 
measurements provides a robust framework for assessing ecological 
condition and identifying zones of anthropogenic impact in urban 
freshwater lakes.

Variations in water quality and heavy metal concentrations across 
sampling sites were reflected in corresponding shifts in sediment mi
crobial community structure. Differences in metals such as Pb, Cu, Ni, 
and Zn were associated with changes in OTU abundance and clustering 
patterns, indicating sensitivity of microbial communities to spatial metal 
gradients. Although metal concentrations at sites S1–S4 did not consis
tently exceed sediment quality guideline values, previous studies have 
shown that prolonged exposure to low or moderate metal levels can 
influence microbial community composition by favoring stress-tolerant 
taxa.

In this study, sites with relatively higher metal enrichment and 
organic load supported distinct microbial assemblages compared to less 
enriched sites, suggesting chronic environmental pressure rather than 
acute contamination. Together, the observed associations highlight that 
sediment microbial communities respond to combined effects of water 
quality and metal enrichment and can serve as sensitive indicators of 
subtle ecosystem disturbance.

3.9. Heatmap-based correlation analysis of environmental parameters 
and microbial OTUs

Heatmap-driven hierarchical clustering showed clear associations 
between water quality parameters, heavy metal contents, and microbial 
OTU patterns in the sediment samples. The results revealed that the 
environmental factors and microbial taxa clustered into distinct groups, 
indicating non-random co-variation and strong site-specific structuring 
of the sediment microbial communities.

Several physicochemical parameters such as pH, Alkalinity, corre
lates with specific OTU clusters. These OTUs were predominantly 
associated with alkalinity, TDS, TSS, BOD, COD, and nutrient concen
trations, exhibited strong positive enriched in sites characterized by 
elevated organic load and nutrient availability, suggesting that micro
bial community composition is closely linked to eutrophic and organi
cally enriched sediment conditions, as shown in Fig. 5. Average water 
quality parameters of sampling sites indicated in Table 3.

Heavy metals like Pb, Cu, Ni, and Zn formed a distinct but partially 
overlapping cluster with subsets of OTUs, indicating metal-associated 
microbial assemblages. OTUs co-occurring with elevated metal con
centrations were predominantly restricted to specific sampling sites, 
suggesting localized metal stress or selection pressure within the sedi
ments. The clustering profile suggests a major role of metal-tolerant or 
metal-associated microbial taxa in site-specific community divergence. 
Correlation coefficients derived from the standardized dataset demon
strated that several OTUs showed moderate to strong correlations (|r| ≥
0.6) with individual water quality parameters and heavy metals, sup
porting statistically meaningful associations rather than random co- 
occurrence. Hierarchical clustering of samples showed that sites with 
similar physicochemical and metal profiles also harbored similar mi
crobial community structures, confirming that environmental filtering 
shapes sediment microbiomes.

Overall, the heatmap analysis demonstrates that spatial variation in 
water quality parameters and metal concentrations is closely associated 
in microbial OTU distribution and abundance, and that microbial 
communities respond in a structured manner to combined organic and 
metal stressors in urban freshwater sediments.

Spatial variation in water quality parameters and sediment heavy 
metal concentrations within Singanallur Lake corresponded with 
distinct microbial community patterns across sampling sites. Differences 
in nutrient-related parameters and metal enrichment across the spatially 
distinct sampling sites (S1–S4) were associated with changes in OTU 

Fig. 5. Heatmap based correlation analysis of water quality parameters and 
microbial OTUs.
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abundance and clustering, indicating sensitivity of sediment microbial 
communities to localized physicochemical gradients within the lake. 
Although the study does not capture temporal dynamics, the observed 
associations suggest that microbial assemblages respond to environ
mental conditions within the lake. These patterns highlight the value of 
sediment microbiomes as indicators of spatial heterogeneity in water 
quality under uniform seasonal conditions.

4. Conclusion

This study provides a spatial ecogenomic characterization of the 
sediment bacterial community of Singanallur Lake, characterized by a 
stable spatially structured core of dominant phyla Pseudomonadota, 
Bacillota, Cyanobacteriota, Bacteroidota, and Actinomycetota, which 
together constitute over 90 % of the relative abundance. Within these, 
the genera Caulobacter, Bosea, and Phreatobacter were identified as 
highly adaptable and ecologically relevant groups that are widely re
ported in freshwater sediments and exhibit physiological flexibility 
under varying environmental conditions. Meanwhile, the consistent 
presence of rare genera such as Akkermansia, Helicobacter, and Candi
datus Saccharimonas highlights localized ecological variability and po
tential niche specialization within the sediment microbial community. 
The occurrence of unique and unclassified taxa within Fim
briimonadaceae and Gemmatimonadaceae highlighted environmental 
heterogeneity and the impact of urban runoff.

Overall, spatial variation in microbial community composition, di
versity indices, and OTU distribution patterns was closely associated 
with measured water quality parameters and sediment heavy metal 
concentrations. These associations indicate that sediment microbial 
communities respond sensitively to present-day physicochemical gra
dients within the lake rather than providing evidence of long-term or 
causal environmental impacts.

From a management perspective, integrating microbial community 
assessments with routine water quality and sediment monitoring can 
strengthen understanding of spatial ecological variability within fresh
water lakes. Regular monitoring of sediment microbial communities 
using high-throughput sequencing approaches can provide a sensitive 
framework for tracking changes in lake ecosystem condition over time.

Overall, the results demonstrate that sediment microbial commu
nities function as sensitive indicators of spatial environmental hetero
geneity within freshwater lake systems, and their ecogenomic patterns 
provide a baseline reference for future temporal, functional, and 
comparative studies aimed at freshwater ecosystem assessment and 
management.
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